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Synopsis 

Although melt spinning is a basic process in the synthetic fiber industry, theoretical under- 
standing of heat transfer and stress development in a melt-spun fiber is limited. In this work, the 
finite-element method is first applied to the melt-spinning process to determine radial and axial 
temperature distributions in a didfying fiber. A thermal stress analysis is then made, again by 
the finite-element method. Calculated stresses are found to reach maximum values shortly after 
the fiber solidifies. Because material properties are reduced at  these elevated temperatures, this is 
a location of potential mechanical failure. Anisotropy due to drawing may add to this problem. 
Analysis of the effects of spinning parameters shows that ambient air temperature is the most 
critical variable in controlling the internal stresses. Mass flow rate and take-up speed have smaller 
effects. 

INTRODUCTION 

Melt spinning is a basic process in the glass and synthetic fiber industries. 
As shown in Figure 1, the process involves extrusion of molten polymer or 
glass through capillaries to form fibers. As it is extruded, the fiber is cooled 
from the extrusion temperature to a temperature below the material's solidi- 
fication point. The fiber is simultaneously drawn, causing a decrease in its 
diameter. In some applications, cooling air is blown perpendicular to the fiber 
to enhance cooling. After collection on a winder, the fiber is usually processed 
further to develop desired properties. 

Heat transfer from the fiber to the surrounding quench medium is im- 
portant in determining the properties of the resulting fiber. This process 
determines the temperature and thermal stress distributions within the fiber. 
Internal stresses are known to have effects on fiber properties such as elastic 
modulus and ultimate strength and can cause cracking on the surface of the 
fiber.' 

The purpose of this work is to develop a mathematical model for calculating 
the thermal stresses induced during the melt spinning of fibers from amorphous 
materials. Because thermal stresses are directly related to the temperature 
gradients within the fiber, the first part of this model must be the calculation 
of the temperature profiles in the fiber. With this information, the model may 
then deal with stress development as a separate problem. Experimental 
verification of the model is considered in a subsequent article. 
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Fig. 1. Diagram of melt-spinning process. 

TEMPERATURE CALCULATIONS 

Numerous mathematical models have been presented for calculating tem- 
perature distributions during the melt-spinning process.2 Of these, only three 
consider variation of temperature across the fiber radius. Andrews3 reports a 
simplified analytical solution for an axisymmetric temperature profile for a 
fiber with a known shape. Matsuo and Kase4 extend their earlier work5 to 
calculate the nonaxisymmetric temperature distribution in a fiber cooled by 
cross-flowing air. This model uses a modified finite-difference technique and 
requires a prior knowledge of the fiber shape. 

In the third model, Hutchenson, Edie, and Riggs6 develop a finite-difference 
solution to the melt-spinning heat transfer problem. As in the Matsuo and 
Kase4 model, this model assumes that radial temperature variation in the 
fiber has no effect on the fiber drawdown. Thus the simple model of Kase and 
Matsuo5 can be used to predict the fiber radius profile. This is done by solving 
the simplified equations of continuity, motion, and energy: 

dT ~ ( T A * ) ' . ~ ~ ( T  - T,) _ -  _ -  
dz wc, 

FP -- - --A* dA* 
dz WP 
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where the heat transfer coefficient is given by 

(1  + C ) .  
h = O.2lkO( $)""[ ( aA* 2w )0'5pv0 I (3) 

Here, C is a coefficient which corrects for the direction of the cooling air flow. 
Since the fiber shape is known, the equation of energy is decoupled from the 
equation of motion. 

Assuming (a) steady-state spinning, (b) constant physical properties p, C,, 
and k ,  (c) negligible viscous heat dissipation, (d) axisymmetric flow, (e) 
axisymmetric temperature distribution, and ( f )  negligible axial heat conduc- 
tion, the equations of continuity and energy can be reduced to 

i a  a 
--(ru,) + - ( V J  = 0 
r dr az (4) 

Note that this results in a problem in two rather than three dimensions. 
Integrating Eq. (4) and substituting the mass flow rate W changes Eq. (5) to 

as the governing differential equation for heat transfer in the fiber. 

defined as follows: 
Hutchenson then expresses Eq. (6) in terms of dimensionless variables 

akz l = -  
WCP 

Substituting these three relationships into Eq. (6) reduces the governing 
equation to 

Note that in this derivation, the radial convection term cancels with one of 
the radial conduction terms, giving a much simpler equation. 
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The following boundary conditions are applied to Eq. (10). 

1. The temperature at  the spinneret is constant a t  the spinning temperature. 
In terms of the dimensionless variables, this is stated as 

2. The radial temperature gradient is zero a t  the center of the fiber, or 

-e(o, a 5 )  = 0.0. 

a t  

3. Heat loss from the surface occurs by convection only. This is stated 
mathematically as 

a h 
ar k -T(R ,  2) = - - ( T ( R ,  2) - 

or, in dimensionless variables, 

The heat transfer coefficient h in Eq. (3) is used in this model. 
At this point, Hutchenson applies the finite-difference method to the 

problem. This yields a system of linear difference equations which can be 
solved for the radial and axial temperature profiles in the fiber. 

In the present work, the same mathematical model is used to describe the 
heat transfer in the melt-spinning process. However, the finite-element method 
is used as the solution technique, rather than the finite-difference method. 
The finite-element method is required in the stress calculations to follow, and 
convenience dictates its use for the temperature calculations also. 

APPLICATION OF GALERKIN’S METHOD 

To apply the finite-element method to Eq. (lo), the fiber is first divided into 
a number of elements, as sketched in Figure 2. In this case, linear triangular 
elements are used, although more complex elements could be employed. 
Within each element, the nodes are labeled i, j ,  and k in a counterclockwise 
manner. Shape function A’, are defined such that the dimensionless tempera- 
ture approximation in the element is given by 

where the 8, are the reduced temperatures a t  the nodes? 
Galerkin’s method states that the solution to a differential equation is best 

approximated when the error function is orthogonal to the weighting or shape 
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Fig. 2. Finite-element discretization of region for heat transfer problem. 

functions.' Thus, for Eq. (lo), this requirement becomes 

where V refers to the volume of the fiber. Applying Green's theorem to the 
second derivative term in Eq. (16) gives 

(17) 

where S refers to the surface of the fiber. Chain differentiating and substitut- 
ing Eq. (14) further reduces Eq. (17) to 

a a8 hR 
/ , a g [ N l T ~  d V +  / d V =  - / - [ N I T $ & .  (18) 

V s k  

In this derivation, the value of 5 is assumed to be constant within an element 
a t  the centroidal value 5. Equation (15) may be substituted into Eq. (18) to 
give 
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If convection is assumed to occur only from the j - k side of an element, the 
integrations in Eq. (19) can be performed by the area coordinate method, as 
described by Segerlind,' to yield the following set of equations for an element. 

where 

b: bibj bibk 

[b ibk  bjbk bi 

s + -  
3 

and (0) is the zero vector. Note that if an element does not have a side from 
which convective heat transfer occurs, then the third term in Eq. (21) must be 

Now the element conduction matrix [k( ' ) ]  can be calculated for each 
element in the fiber and then the global conduction matrix [ K ] can be found 
by proper summation of the element matrices, as per Segerlind.' The boundary 
condition in Eq. (11) is then applied by direct substitution, yielding the 
following final system of equations which can be solved for the values of the 
temperatures at  the nodes. 

dropped. 

[ ~ ] { e }  = C [ k ( e ) ] { e }  = { F } .  (22) 
all 

elements 

Note that the zero-gradient boundary condition of Eq. (12) is an implicit 
assumption of the finite-element method. 

STRESS CALCULATIONS 

Given the temperature distribution and the axial stress applied to the fiber 
by the winder, the stress state within the fiber can be predicted. However, the 
occurrence of a phase change within the fiber complicates the problem. 
Various methods have been proposed for calculating these stresses. Gorissen' 
presents a numerical integration procedure for thermal stress calculation for 
an elastic, isotropic material with temperature-independent mechanical prop- 
erties. The method gives good qualitative results, but is limited in its applica- 
bility. Lewis and Bassg apply the finite-element method to stress calculations 
for various phase change processes. The flexibility of the method allows for 
variable physical and mechanical properties and gives good results. In a 
similar paper, Rigdahl" reports a finite-element solution for stresses in an 
injection-molded polymer article. 

Because it can handle the temperature dependence of physical and mech- 
anical properties, the finite-element method was selected for the stress 
calculations in this work. In a stress analysis problem, the radial and axial 
displacements at  each node are calculated so that the total potential energy of 
the system is minimized.' Once the displacements are known, the strains and 
stresses can be determined. 
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As in the heat transfer problem, the displacements in a single linear 
triangular element are represented by 

(4 = “*IW> (23) 

where = [uruzIT (24) 

and 

Note that in ,this problem there are two unknowns at  each node. Mathemati- 
cally minimizing the potential energy results in a set of element equations 
given by 

{ u> = [ q, iuz, iur, juz, jur, kuz, k ]  ’* (26) 

[rz‘“’]{V> = { f ‘“1) (27) 

(28) 

where 

and 

For an axisymmetric problem such as this, the above matrices are defined as 
follows: 

1 
2 A  

[ B ]  = - 

bi 0 

0 ci 

2ANi 
r 

ci bi 

0 

0 cj 0 ‘k 

2ANj 2ANk 
r r 

0 -  0 

C j  bj ck bk 

E(1 - P) 
= (1 + p ) ( l -  2 p )  

0 

0 

0 

P P - -  
1 - p  1 - p  

1 - P  

1 

CL 
p 1  

1 - P  

1 - p  1 - p  

0 0 0 

- -  p 1  
P 

1 - 2p 

2 0  - P) 
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Problems obviously occur in the evaluation of the integrals in Eqs. (28) and 
(29) because r and the shape functions vary within an element. To simplify 
the integrations, these variables are assumed to be constant at their centroidal 
values (F  and Hfl = a). With this assumption, the element stiffness matrix 
[Fz(')] can be evaluated directly. If the temperature of the element is taken as 
the average of the three nodal temperatures, the first term in Eq. (29) can be 
similarly evaluated. The second term in Eq. (29) can be evaluated by the area 
coordinate method? Note that for the fiber-spinning problem, p ,  is zero and 
p,  is the applied winder stress. The final results of the integrations follow: 

[K")] = 27rTA[BIT[D][B] (34) 

0 
2 R i +  R j  

( f ( " ) >  = ~~~FAC~AT'[B]~[D]{  + R i  + 1 2Rj 1 (35) 

0 

Note that the second term in Eq. (35) is included only for those elements on 
the lower end of the fiber where the winder stress is applied. As in the 
temperature problem, the global problem is created by proper summation of 
the element equations? 

From the geometry of the problem, it may be seen that two boundary 
conditions must be applied. 

1. The radial displacement at  the center of the fiber must be zero; i.e., 

u,(o, 2) = 0.0. (36) 

2. The axial displacement at  the spinneret must be zero 

u,(r,O) = 0.0. (37) 

Both of these conditions are applied by direct substitution into the final set of 
equations. 

Once the displacements have been determined, the stresses in each element 
may be calculated. By Hooke's law, the stresses are given by 

where 

As before, the elements of [ B ]  are variable. Because centroidal and average 
values were used in calculating the displacements, the stresses should also be 
calculated at the centroid. Thus [B] is substituted for [ B ]  in Eq. (38). Note 
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that the stresses are now constant within an element, requiring a relatively 
fine grid of nodes to provide accurate results. 

Because centroidal stress values are difficult to interpret, it is preferable to 
calculate the stresses at the nodes. Segerlind7 describes such a method for 
properly distributing element stresses to the nodes. Consistent nodal stresses 
are found by solving the system of equations 

(40) 

[c] = c [d")] = 
all 

elements elements 

{ R }  = c {+)} = c j (r [N]TdV 
all all V 

elements elements 

and {(I * } is the vector of nodal stress values. Here, 8 is the calcul ted element 
stress and the calculation is repeated for each of the four stress components. 
Integration by the area coordinate method7 yields the following results. 

( 2 R ,  + 2RJ + R k )  

( 6 R ,  + 2RJ + 2Rk)  

( 2 R ,  + R, + 2 R k )  

( 2 R ,  + 6RJ + 2Rk)  

( 2 R ,  + 2RJ + R k )  

( R ,  + 2RJ + 2Rk)  

( R ,  + 2RJ + 2Rk)  

( 2 R ,  + R, + 2Rk)  

( 2 R ,  + 2RJ + 6Rk)  
(43) 1 30 

RESULTS AND DISCUSSION 

The most useful aspect of a model such as this is its ability to predict 
changes in temperatures and stresses caused by changes in spinning conditions. 
To this end, a series of simulations was made to determine which spinning 

TABLE I 
Physical and Mechanical Properties of Polystyrene 

p = 1040.0 kg/m3 
Cp = 1836.8 J/kg . K 

k = 0.128 W/m . K 
ps = 0.32 
a, = 5.7 X K-' 
a,  = 1.7 X K-' 
2'' = 373.15 K 
A, = 5.1052 X lo-'' P a .  S" 
B, = 14520.8 K" 

"Elongational viscosity is given b y p  = 3A,exp(B,/T). 



1082 BELL AND EDIE 

L L-.l u I  
$ o o o t  
A 
w 

\ 
\ 
\ 

n l  I I I I I I I L I 
20 110 60 80 100 120 

T E M P E R A T U R E  l ° C l  
Fig. 3. Elastic modulus data for polystyrene. 

TABLE I1 
Input Data for Simulation Runs 

Spinneret Mass flow Cooling air Spinning Take-up 
Run diameter rate temperature temperature S P d  

number (m) X lo6 (kg/s) X lo6 (K) (K) (m/s) 

1 688.8 6.053 300.95 538.15 4.4340 
2 516.6 6.053 300.95 538.15 4.4340 
3 861.0 6.053 300.95 538.15 4.4340 
4 688.8 4.540 300.95 538.15 4.4340 
5 688.8 8.016 300.95 538.15 4.4340 
6 688.8 6.053 280.95 538.15 4.4340 
7 688.8 6.053 320.95 538.15 4.4340 
8 688.8 6.053 300.95 528.15 4.4340 
9 688.8 6.053 300.95 548.15 4.4340 

10 688.8 6.053 300.95 538.15 3.3255 
11 688.8 6.053 300.95 538.15 5.5425 

parameters are most important. Polystyrene was chosen as the material for 
the simulation. The necessary material properties are given in Table I and 
Figure 3, while the variations made are listed in Table 11. 

BASE CASE-RUN 1 

Figure 4 shows the fiber radius for Run 1 as predicted by Eqs. (1) and (2). 
This model gives a solidification length of 0.1798 m, but it should be noted 
that the drawdown is more than 99% complete a t  an axial distance of 0.05 m. 
The spinline tension is calculated as 1.414 X lop3 N. 

Figure 5 shows the surface and center-line temperature profiles as calcu- 
lated by the finite-element method. The model predicts that solidification 
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begins at 0.1803 m, nearly identical to the value found above. However, 
solidification is not complete until z = 0.1874 m, indicating that radial tem- 
perature variation is significant. The center-to-surface temperature difference 
has a maximum value of 8.90 K at z = 0.038 m and a value of 3.64 K at the 
onset of solidification. These differences will affect the magnitude of the 
thermal stresses within the fiber. 

Figure 6 shows the radial variation in normal axial stress at several axial 
positions. Before solidification ( z  = 0.160 m), the stress profile is very flat, 
indicating that thermal stresses in the molten region are small compared to 
the spinline tension. Immediately after solidification ( z  = 0.194 m), significant 
radial variation in axial stress is observed. This variation is due primarily to 
the rapid variation of modulus with temperature just below the glass transi- 
tion. As the fiber cools further, the modulus variation decreases and the stress 
profiles begin to flatten. 

These stress distributions conform to the predictions of Ziabicki." Stresses 
are larger at the surface because these layers are cooler and have a higher 
modulus. Thus they can support a greater proportion of the spinline tension 
than the hot, softer interior. Note that near the center of the fiber, calculated 
stresses deviate from the smooth curves shown. This is caused by an increase 
in the error of the F approximation in Eqs. (34) and (35) as r approaches zero. 
Because large increases in memory are required to increase the number of 
nodes in the radial direction, extrapolation of the data to obtain center-line 
values is recommended.12 
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Fig. 7. Radial stress profiles for Run 1. 

Figures 7 and 8 show radial and hoop stresses at  several points after 
solidification of the fiber. The center and surface stresses are found to initially 
increase with z, again due to modulus variation with temperature. However, 
a t  z = 0.224 m, the stresses reach maxima, indicating a point of potential 
mechanical failure of the fiber. These stresses decay to zero as the radial 
temperature gradient decreases. 

Although the radial and hoop stresses are somewhat smaller than the axial 
stress, they may cause problems in the spinning operation. The tensile hoop 
stress at  the surface of the fiber can cause longitudinal cracks to develop in 
brittle fibers such as glass.' Because of the drawing process, preferred orienta- 
tion is induced in the fibers during spinning, resulting in an anisotropic 
material. Mechanical strength in the direction normal to the orientation may 
be considerably less than that in the axial direction. The effects of elevated 
temperature must also be considered. Thus, the maxima in these stress 
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components represent potential problems in the spinline for any material with 
a highly anisotropic breaking strength. 

Simulations were made to determine the effects of the spinning conditions 
on temperature and stress distributions in the spinline, as noted in Table 11. 
Critical results from the simulations are summarized in Table 111. 

Variations made in Runs 2 and 3 indicate that the only significant effects of 
the spinneret diameter is on spinline tension. As the initial diameter increases, 
the draw ratio increases and the required tension must also increase. There is 
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TABLE111 
Summary of Simulation Results 

% Change in % Change in 
Run Variable 4; Change in R: Change in % Change in max. radial stress max. hoop stress 

number change variable max. temp. diff. spinline tension at center at surface 
~ 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

~~ ~~ 

DSPin - 25.0 
Dsp,n +25.0 
W - 25.0 
W + 25.0 

Ta + 6.6 

f1 .9 
K, W - 25.0 
K. + 25.0 

'a - 6.6 

%Pill - 1.9 

+ 0.6 
- 0.4 
- 4.8 
+ 4.0 
+ 8.5 
- 8.7 
- 4.4 
+ 4.4 
- 4.3 
+ 3.5 

- 6.4 
+ 4.6 
- 1.8 
+ 1.3 
+ 7.5 
- 7.8 

+ 65.4 
- 38.5 
- 7.7 
+ 6.2 

+ 0.3 
+ 0.3 
+ 4.0 

+ 34.1 
- 34.4 
- 0.1 
+ 0.4 
- 4.3 
+ 3.9 

- 4.1 

+ 0.2 
+0.1 
- 4.2 
+ 3.7 

+ 34.7 
- 34.8 
- 0.3 
+ 0.5 
- 4.2 
+ 3.7 

no significance to the fact that the radial and hoop stresses increase in both 
runs; these changes are within the numerical error expected in the calcula- 
tions. 

Spinning temperature has similar though more pronounced effects, as 
shown in Runs 8 and 9. Spinline tension changes significantly with Tsph 
because of the resulting change in the material's elongational viscosity. Mod- 
erate changes in radial temperature differences are observed, but these cause 
little change in the maximum stresses. Thus, though spinning temperature is 
certainly an important variable in properly running a spinning operation, it 
has little effect on the radial fiber stress distribution. 

Very similar effects are seen for mass flow rate (Runs 4 and 5) and take-up 
speed (Runs 10 and 11). Mass flow rate has a slightly greater effect on a radial 
temperature difference, while take-up speed influences spinline tension more 
significantly. Changes in maximum stresses, however, are nearly identical, 
though not large. These changes are due primarily to changes in the draw 
ratio and size of the solidified fiber. The similarity of the results follows from 
the assumption of constant mass flow rate. 

Finally, the cooling air temperature is found to have the largest effect on 
the stress distribution within the fiber. A 6% change in T, results in a 34% 
change in maximum stresses. This result is not entirely unexpected. Cooling 
air temperature is the only variable which directly influences the cooling 
process. If T, is decreased, heat transfer from the fiber to the surroundings 
becomes more rapid and the resultant thermal stresses must be greater. Thus, 
as a fiber is cooled more slowly, problems with stress cracking are reduced. 
This, of course, conflicts with the economic need of producing fibers as rapidly 
as possible. 

SUMMARY 

In conclusion, thermal stress analysis of fiber melt spinning indicates that, 
of all the spinning conditions, ambient air temperature has the greatest effect 
on internal stresses. Mass flow rate and take-up speed have some effect, but 
not as large as that of T,. These results show that slow cooling of the spinline 
is essential if internal thermal stresses in the melt spun fiber are to be 
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minimized. Experimental verification of these results will be given in a later 
publication. 

APPENDIX: NOMENCLATURE 
A = area of element, m2 

b, = shape function coefficient 
c, = shape function coefficient 
Cp = heat capacity, J/kg . K 

DSph = spinneret diameter, m 
E = elastic modulus, Pa 
F = spinline tension, N 
h = heat transfer coefficient, W/m2 * K 
k = thermal conductivity, W/m - K 

La, = length of a! - p side of element, m 

A* = cross-sectional area of fiber, m2 

K O  = thermal conductivity of air, W/m . K 

N, = shape function 
ps = applied stress, Pa 
R = fiber radius, m 
T = absolute temperature, K 

T, = ambient air temperature, K 
Tspk = spinning temperature, K 

u, = displacement, m 
v, = velocity, m/s 
W = mass flow rate, kg/s 
a = linear coefficient of thermal expansion, K-' 

= elongation viscosity, Pa . s 
5 = dimensionless axial distance 
8 = dimensionless temperature 
p = Poisson's ratio 
vo = kinematic viscosity of air, m2/s 
5 = dimensionless radius 
p = density, kg/m3 
u = normal stress, Pa 
7 = shear stress, Pa 
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